Sila la click jika ade.....

Thursday, September 01, 2011

2011/2012 Season Top Football/Soccer Player Summer Transfer - BPL

5 comments


Salam Aidilfitri, Salam Merdeka dan Salam 1Malaysia. Kehangatan raya dan merdeka kali ini dihangatkan lg dengan perpindahan2 pemain2 bolasepak bg season baru 2011/2012. Bagi peminat2 bolasepak, season kali ini banyak nama besar yang berhijrah ke kelab lain terutama kelab dalam liga perdana Inggeris(BPL) atau EPL. Mungkin ramai juga yang mengikuti live deadline day transfer semalam yang abis dalam 7 pagi td. So entri kali ini akan cover perpindahan2 pemain2 ternama dan juga apa yang berlaku pada deadline day transfer semalam.



Arsenal

Of cos, pasukan atau team yang menjadi tumpuan kali ini ialah Arsenal bimbingan Arsene Wenger dengan perpindahan keluar dua tonggak utama mereka Cesc Fabregas(Barcelona) & Samir Nasri(Man City) memberikan tamparan hebat sehingga dimalukan oleh pasukan Man United bimbingan Sir Alex Ferguson 8-2. Selain Fabregas & Nasri, antara lain yang meninggalkan club secara kekal adalah Gael Clichy(Man City), Emmanuel Eboué(Galatasaray) & Armand Traore(QPR). Manakala Bendtner pulak dipinjamkan ke Sunderland.

Wenger juga membawa masuk ramai pemain musim ini, terutama sekali pada deadline day transfer dengan empat pemain di bawa masuk Per Mertesacker(Werder Bremen), Andre Santos(Fenerbache), Mikel Arteta(Everton) dan meminjam Yossi Benayoun.(Chelsea) Sehari sebelum, Park Chu Young(Monaco) menandatangani kontrak sebagai pemain Arsenal. Antara muka lain yang di bawa masuk adalah Gervinho(Lille)-(1st dapat kad merah) dan 2 pemain muda Alex Chamberlain(Southampton) & Joel Campbell(Lorient).


Chelsea

Selain Arsenal, Chelsea bimbingan jurulatih baru Andre Villa-Boas turut aktif pada musim perpindahan kali ini. Seperti biasa dengan peruntukan yang banyak, Chelsea berjaya mendapatkan khidmat pemain Romelu Lukaku(Anderlecht), Oriol Romeu(Barcelona) dan Juan Mata(Valencia). Dan pada hari penutup semalam, Chelsea berjaya mendapatkan Raul Meireles dari Liverpool.


Liverpool

Bagi Liverpool pula, "King" Kenny Danglish telah berjaya membawa masuk Charlie Adam,(Blackpool) Jordan Henderson(Sunderland), Stewart Downing(Aston Villa), Jose Enrique (Newcastle Utd) dan pemain muda Sebastian Coates(Nacional) bagi menguat pasukan beliau. Dan pada Deadline day, beliau telah membawa masuk semula bekas pemain Liverpool Craig Bellamy(Man City).

Liverpool juga turut melepaskan ramai pemain seperti Milan Jovanovic(Anderlecht), Daniel Ayala(Norwich City), Nabil El Zhar(Levante), Sotirios Kyrgiakos(Wolfsburg) & Emiliano Insua(Sporting Lisbon) dan dua pemain dipinjamkan iaitu Alberto Aquilani (AC Milan) & Dani Pacheco(Atl Madrid). Dan pada hari penutup semalanm, Raul Meireles(Chelsea), David Ngog(Bolton) & Christian Poulsen(Evian Thonon Gaillard) meninggalkan pasukan secara kekal manakala Joe Cole dipinjamkan ke Lille.


Manchester City

Pasukan milik jutawan Abu Dhabi Group United, Sheikh Mansour bin Zayed Al Nahyan memperuntukkan Roberto Mancini transfer budget yang banyak dan hasilnya dua nama besar menyertai Man city iaitu Sergio Kun Aguero(Atl Madrid) dan Samir Nasri(Arsenal). Selain dua nama tersebut, Man City turut mendapatkan khidmat Clichy(Arsenal) dan akhir sekali pada hari penutup berjaya mendapatkan pemain yang sering dilanda kecederaan Owen Hargreaves dari jiran Manchester United.

Dengan kemasukan ramai pemain2 hebat, beberapa pemain telah keluar dari Man City untuk mendapatkan tempat sebagai Starting XI dalam pasukan lain antaranya, Shaun Wright Phillip(QPR), Roque Santa Cruz(Real Betis), Emmanuel Adebayor(Spurs), Shay Given(Aston Villa), Jerome Boateng(Bayern Munich), Jô(Internacional) & Craig Bellamy(Liverpool).


Manchester United

Seperti jirannya, Sir Alex Ferguson tidak banyak membawa masuk pemain2 baru dengan membawa masuk 3 pemain iaitu, Ashley Young(Aston Villa), Phil Jones(Everton) & penjaga gol muda Sepanyol(goalkeeper) David De Gea(Atl Madrid) untuk mengantikan Edwin Van Der Sar yang telah bersara. Pemain yang keluar adalah seperti, John O'Shea(Sunderland), Wes Brown(Sunderland) & Gabriel Obertan(Newcastle Utd).


Lain-lain.

Lain2 pasukan yang aktif pada perpindahan kali ini ialah, QPR pasukan miliki rakyat Malaysia Tony Fernandez dengan membawa masuk ramai pemain seperti Joey Barton(Newcastle United), Anton Ferdinand(Sunderland), Shaun Wright-Phillips(Man City), Armand Traore(Arsenal), Luke Young(Aston Villa). Tottenham pula berjaya mendapatkan khidmat Scott Parker(West Ham)manakala Fulham mendapatkan khidmat Bryan Ruiz(FC Twente). Stoke City berjaya mendapat dua pemain Tottenham iaitu Peter Crouch & Wilson Palacios. Newcastle United pula berjaya mendapatkan Davide Santon dari Inter Milan.



sumber:
ESPN Soccernet

SkySport
Goal.Com

Image:
Google



"Hingga Jari Bertemu Keyboard Lagi"


Read more...

Monday, August 29, 2011

Aidilfitri 1432H/2011M

0 comments

Salam Aidilfitri semua. So, esok umat Islam di Malaysia akan menyambut Hari Raya Aidilfitri setelah cukup sebulan berpuasa di bulan Ramadhan. So bagimana persiapan menjelang raya esok??Kalau dulu2, time2 camni orang sibuk rebus ketupat, bakar lemang dan masak rendang. Manakala budak2 ade yang sibuk pasang pelita dan ade jugak yang bermain bunga api dan mercun.


Sekarang pun, walaupun dan menuju ke zaman moden, bende2 2 sume, masih lagi diamalkan kerana perkara tersebutlah yang menceriakan suasana hari raya. Mungkin ade sesetengah mengambil cara mudah kerana kesibukan dengan membeli semua juadah seperti ketupat, lemang dan rendang. Walaupun begitu, juadah tersebut wajib ada meskipun dibeli bukan nya dimasak sendri.

Walau apapun, Hari Raya adalah hari untuk kita bergembira dan bukan hari untk bersedih disebabkan meratapi permergian saudara mara yang terlibat dalam kemalangan. Oleh itu, kepada sume, adalah dinasihatkan untuk sentiasa berhati-hati ketika pulang ke kampung. Patuhilah undang2 jalanraya dan nasihat2 daripada JPJ, PDRM, PLUS supaya berhati-hati.

Tidak dilupakan juga, kepada adik2 semua, jangan merbahayakan diri bermain mercun dan bunga api. Kalau ada yang main juga hati-hati, tetapi lebih baek jangan maen especially adik2 yang nk exam lepas raya ni. Takut nanti, nak jawab exam susah sebab putus jari, putus tangan. Dan selamat mengumpul duit raya.

So, Saya Mohd Shahir Bin Abdul Aziz, ingin mengucapkan selamat HARI RAYA AIDILFITRI DAN MAAF ZAHIR BATIN kepada sume yang mengenali diri saya, especially keluarga, Adik Helmi yang beraya diperantau, sahabat2 SDAR, KMPP, UPSI, warga sekolah SAMPJ, dan juga sahabat blogger dan twitter. Terima la lagu 1 Syawal dari Johan Rajalawak OST untuk Nak Balik Raya.







image:GOOGLE
video:YOUTUBE

"Hingga Jari Bertemu Keyboard Lagi"



Read more...

Monday, August 15, 2011

10 Malam Terakhir Ramadhan

3 comments

Salam Ramadhan untuk semua dan salam 1 Malaysia. Masih tak terlambat rasanya nak ucapkan selamat berpuasa kepada semua muslimin dan muslimat. Hari ini sudah setengah bulan kita mengharungi bulan ramadhan dengan berpuasa dan berterawikh serta bertadarus dan memperbanyakan amalan kita kepada ALLAH SWT. Kepada sesiapa merasakan amalan yang dilakukan masih tidak mencukupi, masih tidak terlambat lagi untuk memperbanyakan amalan kita itu.


Ramai orang sudah mula sibuk dengan persiapan raya masing-masing. Mungkin ada diantara korang semua yang sebelum ramadhan lagi sudah mula sibuk untuk persiapan raya sampaikan ada kawan2 mengusik, "puasa pun belum dah sibuk raya". Tapi apa salahnya kalau kita mula bersiap dari awal dari segi tempahan baju raya, kuih dan juga pilihan nak balik kampung belah siapa bagi pasangan suami isteri.

Selain persiapan peribadi dan kediaman, di mungkin ada antara korang yang sibuk menghias office bagi mendapatkan "feeling" suasana Raya Aidilfitri. Ada yang sibuk menggantung ketupat, kad raya bagi mendapatkan suasana raya aidilfitri yang disambut sekali dalam setahun.

Namun begitu, dalam sibuk kita bersiap untuk raya, jangan kita lupa juga bersiapkan diri untuk bekalan di akhirat kelak.Hal ini kerana, pada malam 10 terakhir ramadhan akan berlakunya malam Al-Qadar. Menurut hadis, Daripada Aisyah RA : “Apabila masuk malam 10 terakhir Ramadhan, baginda SAW menghidupkan malam dengan beribadah, mengejutkan ahli keluarganya bersungguh-sungguh dan uzlah (menjauhi) isteri-isterinya”. (HR Bukhari & Muslim). Nabi Muhammad SAW juga bersabda: “Carilah malam al-Qadar pada malam sepuluh terakhir Ramadhan”. (HR Bukhari & Muslim).

Pada malam 10 terakhir ramadhan, kita digalakkan untuk bangun melakukan Qiamullail dengan melakukan solat-solat sunat seperti solat sunat hajat, tasbih, taubat dan tahajjud dengan ikhlas dan bertekad untuk untuk memperkuatkan iman kita. Memperbanyakkan zikrullah kepada ALLAH SWT dan selawat ke atas Nabi Muhammad SAW. Selain itu, kita juga digalakkan untuk bertaubat dan meminta keampunan daripada ALLAH SWT yang Maha Pengampun.

So itu, sahaja yang nak dikongsikan bersama, sebagai pedoman untuk kita bersama. Jom kita ramai2 penuhkan shopping Kompleks yang banyak buat Jualan Murah time2 raya ni.

"Hingga Jari Bertemu Keyboard Lagi"



Read more...

Friday, August 05, 2011

Ramadhan - Sahur

0 comments

Salam semua. Selamat Hari Jumaat dan Selamat Berpuasa kepada semua umat Islam yang sedang menjalankan rukun Islam ketiga. Arini aku datang awal ke pejabat dan sempat mendengar sedikit renungan pagi yang di sampaikan oleh saudara Shahrul dari Unit Latihan BSM UPSI. Renungan tersebut bertajuk "Kesilapan Kerap Muslim di Bulan Ramadhan".

Antara yang menarik perhatian aku adalah mengenai bangun sahur. Perkara pertaman, makan sahur di tengah malam kerana malas bangun. Individu yang begini terhalang dari mendapat keberkatan dan kelebihan yang ditawarkan dan bercanggah dengan sunnah Rasulullah SAW. Sahur itu sendiri dari sudut bahasa bermaksud waktu terakhir dihujung malam. Para Ulama' pula menyebut waktunya adalah 1/6 terakhir malam.

Seterusnya, adalah mengenai waktu Imsak sebagai 'lampu merah' bagi sahur. Waktu Imsak sebenarnya tidak lain hanyalah sebagai 'lampu amaran oren' yang dicadangkan oleh beberapa ulama demi mengingatkan bahawa waktu sahur sudah hampir tamat dan bukan waktu tamat untuk makan sahur. Waktu yang disepakati ulama bagi penamat sahur adalah sejurus masuk fajar sadiq iaitu subuh.

Selain itu, bersahur dengan makan dan minum sahaja tanpa ibadah lain adalah amat merugikan. Ini kerana pada waktu tersebut adalah waktu terbaik untuk beristigfar, memohon keampunanan, bertaubat dan melakukan solat2 sunat malam. Firman Allah SWT dalam surah Az-Zariyyat ayat 18 yang bermaksud " dan ketika waktu-waktu sahur itu mereka meminta ampun dan beristigfar".

Kesimpulannya, jom ramai2 bangun sahur kerana banyak kelebihannya.

p/s: jangan bagi alasan x boleh puasa sebab x bangun sahur.


"Hingga Jari Bertemu Keyboard Lagi"



Read more...

Tuesday, July 19, 2011

Muzium Pendidikan Nasional

0 comments

Salam sume. Pada hari ini aku berpeluang menghadiri majlis perasmian Muzium Pendidikan Nasional. Perasmian telah dilakukan oleh DYMM Raja Permaisuri Perak, Tuanku Bainun bersempena Ulang Tahun Keputeraan DYMM Paduka Seri Sultan Azlan Muhibbuddin Shah, Sultan Perak. Turut hadir YAB Menteri Besar Perak, Dato' Seri DiRaja Dr Zambry. Bangunan Suluh Budiman telah dinaik taraf untuk dijadikan Muzium Pendidikan Nasional yang menelan belanja hampir RM9.5 juta. Di bawah sedikit info mengenai Bangunan Suluh Budiman.

Bangunan Suluh Budiman (BSB) merupakan sebuah bangunan bersejarah terutama dalam bidang pendidikan dan perguruan, telah didaftarkan sebagai Warisan Kebangsaan pada 12 November 2009 di bawah Akta Warisan Kebangsaan 2005 (Akta 645). Pada 1922 ketika itu UPSI dikenali sebagai Sultan Idris Training College, BSB merupakan dewan besar bagi SITC selain menempatkan bilik pengetua, bilik2 pentadbiran dan juga bilik mesyuarat. BSB juga turut dijadikan dewan untuk persembahan2 pelajar.

Cadangan pembinaan Muzium Pendidikan Nasional telah dicadangkan UPSI bermatlamat bagi memelihara semua nilai warisan dan rangkuman sejarah dari dahulu sehingga kini dalam bidang pendidikan dan perguruan. Pada 24 Ogos 2009 projek menjadikan BSB sebagai Muzium pendidikan telah dimulakan. Pada tarikh 23 Disember 2010, BSB telah siap dinaik taraf sebagai muzium. Muzium Pendidikan Nasional dipersembahkan kepada pengunjung dalam 19 tema diwakili oleh 21 galeri berasaskan misi dan visi MPN iaitu, MELESTARIKAN WARISAN PENDIDIKAN NEGARA. Turut dipamerkan Laporan Jawatankuasa Pelajaran 1915 dan Buku Laporan Kabinet mengkaji pelaksanaan Dasar Pelajaran.

Selepas 89 tahun melalui pelbagai perkembangan dan pembangunan pendidikan, Bangunan Suluh Budiman sewajar dijadikan Muzium Pendidikan nasional kerana banguna tersebut merupakan ikon utama kepada UPSI yang telah ramai melahirkan tokoh pendidikan negara seperti Zainal Abidin Ahmad (Za'aba), Harun Aminurrashid dan Abdul Rahman Talib

rujukan : Buku Program Majlis Perasmian MPN UPSI, Laman Web Muzium Pendidikan Nazional.


"Hingga Jari Bertemu Keyboard Lagi"


Read more...

Wednesday, June 29, 2011

History of Mathematics - Algebra

0 comments

Algebra is a branch of mathematics concerning the study of structure, relation and quantity. Elementary algebra is the branch that deals with solving for the operands of arithmetic equations. Modern or abstract algebra has its origins as an abstraction of elementary algebra. Some historians believe that the earliest mathematical research was done by the priest classes of ancient civilizations, such as the Babylonians, to go along with religious rituals. The origins of algebra can thus be traced back to ancient Babylonian mathematicians roughly four thousand years ago.

The term Algebra comes from Arabic word ‘Al Jabr’ that was found in Al-Kitab Al Mukhtasar fi hisab al jabr wa’l muqabala or in Arabic authored by Abu Jafar Muhammad ibn Musa al-Khawarizmi, also known as Al-Khwarizmi which can be translated as The Compendious Book on Calculation by Completion and Balancing. His book eventually helped him become the ‘Father Of Algebra’. The exact meaning of the word al-jabr is still unknown, most historians agree that the word meant something like "restoration", "completion", "reuniter of broken bones" or "bonesetter." The term is used to describe the operations that he introduced, "reduction" and "balancing", referring to the transposition of subtracted terms to the other side of an equation, that is, the cancellation of like terms on opposite sides of the equation.

Development Of Algebra

The development of symbolic algebra can be divided into 3 stages.
Rhetorical algebra
Syncopated algebra
Simbolic algebra

Conceptual Stages

In addition to the three stages of expressing algebraic ideas, there were four conceptual stages in the development of algebra which occurred alongside the changes in expression. These four stages were as follows.
Geometric
Static Equation-Solving
Dynamic Function
Abstract

Babylonian Algebra

Babylions were more concerned with quadratic and cubic equations.They were familiar with many simple forms of factoring, three-term quadratic equations with positive roots and many qubic equations although it is not known if they were able to reduce the general cubic equations. Tthe Babylions were not interested in exact solutions but there interest about approximations, so they would commonly use linear interpolations to approximate intermediate values. The Babylonians had developed flexible algebraic operations with which they were able to add equals to equals and multiply both sides of an equation by like quantities so as to eliminate fractions and factors. They also dealt with the equivalent of system of two equations in two unknown. They considered some problems involving more than two unknowns and a few equivalent to solve equations of higher degree.

Egyptian Algebra

The Egyptians were mainly concerned with linear equations.
Example :
x + ax = b
x + ax + bx =c
can solved when a, b and c are known.

The similarity between the Babylonians and Egyptians are :
Their algebra essentially rhetorical, that is, it is use no symbols. Problems were stated and solved verbally. Only recognize positive rational numbers

Greek Geometrical Algebra

It is sometimes that the Greeks had no algebra, but this is inaccurate. But the time of Plato, Greek mathematicians had undergone a drastic change. For example, the geometric algebra can be solve by the linear equations ax = bc. The ancient Greeks solve this equation by looking at it as an equality of areas rather than as an equality between the ratio a:b and c:x. The rectangle can be construct length b and c and the side will extend of, finally they would complete the extended rectangle as to find the side of rectangle, that is the solution. The significant achievement was in applying deductive reasoning and describing general procedures. The Greeks of classical period, who did not recognize the existence of irrational numbers, avoided the problem thus created by representing quantities as geometrical magnitudes. In content, there was little beyond what the Babylion had done.

Chinese Algebra

The Chinese introduced magic square in Chiu-chang Suan-Shu or The Nine Chapters on the Mathematical Art, written around 250 BCE, to solve determinate and indeterminate simultaneous linear equations using positive and negative numbers, with one problem dealing with solving four equations in five unknowns

Indian Algebra

The method known as "Modus Indorum" or the method of the Indians have become our algebra
today. Brahmagupta solves the general quadratic equation for both positive and negative roots. He was the first to give a general solution to the linear Diophantine equation ax + by = c, where
a, b, and c are integers. In writing Brahmagupta wrote addition by placing the numbers side by side, subtraction by placing a dot over the subtrahend, and division by placing the divisor below the dividend, similar to our notation but without the bar. Multiplication, evolution, and unknown quantities were represented by abbreviations of appropriate terms.

Islamic algebra

Al-jabr wa'l muqabalah

Al-Jabr is divided into six chapters, each of which deals with a different type of formula. The first chapter of Al-Jabr deals with equations whose squares equal its roots (ax2 = bx), the second chapter deals with squares equal to number (ax2 = c), the third chapter deals with roots equal to a number (bx = c), the fourth chapter deals with squares and roots equal a number (ax2 + bx = c), the fifth chapter deals with squares and number equal roots (ax2 + c = bx), and the sixth and final chapter deals with roots and number equal to squares (bx + c = ax2). In Al-Jabr, al-Khwarizmi uses geometric proofs, he only deals with positive roots. He also recognizes that the discriminant must be positive and described the method of completing the square. Al-Jabr is fully rhetorical with the numbers even being spelled out in words. For example, what we would write as
x^2+ 10x = 39
And al-Khawarizmi would have written as One square and ten roots of the same amount to thirty-nine dirhems.

European Algebra

In 13th century, the Italian mathematicians Leonardo Fibonacci achieved a closed approximation to the solution of the cubic equation x3 + 2x2 + cx = d. He used Arabic method of successive approximations. The Italian mathematicians Scipione del Ferro, Nicollo Tartaglia and Gerolamo Cardano solved the general cubic equations in terms of the constants appearing in the equation in 16th century.

From Gauss, algebra had entered its modern phase. Attention shifted from solving polynomial equations to studying the structure of abstract mathematical systems whose axioms were based on the behavior of mathematical objects, such as complex numbers, that mathematicians encountered when studying polynomial equations. Two examples of such systems are algebraic groups and quaternions which share some of the properties of number systems but also depart from them in important ways. Groups began as systems of permutations and combinations of roots of polynomials, but they became one of the chief unifying concepts of 19th-century mathematics.

Immediately after Hamilton's discovery, the German mathematician Hermann Grassmann began investigating vectors. Despite its abstract character, American physicist J. W. Gibbs recognized in vector algebra a system of great utility for physicists, just as Hamilton had recognized the usefulness of quaternions. The widespread influence of this abstract approach led George Boole to write The Laws of Thought (1854), an algebraic treatment of basic logic. Since that time, modern algebra also called abstract algebra has continued to develop. Important new results have been discovered, and the subject has found applications in all branches of mathematics and in many of the sciences as well.


"Hingga Jari Bertemu Keyboard Lagi"


Read more...

Monday, June 20, 2011

June 2011

0 comments


Salam sume. Lame juga aku x update blog sampaikan untuk bulan Jun ni xde langsung entri2 baru dari aku. Seperti biase la, ketidakadaan internet yang menyebabkan faktor utama aku xdapat update blog. Banyak perkara berlaku dalam bulan Jun ni, tetapi tidak berkesempatan nak tulis dalam blog ni.

Pertama, result utk semester 1 aku, pada peringkat Sarjana ni(master) kuar awal bulan ni. Alhamdulillah, result yang bagus dan sangat menggembirakan. Dapat la jugak menyakinkan parent and family aku yang pada awal nye yang agak membantah keputusan aku untuk sambung master. Walaubagaimanapun, aku bersyukur dan akan terus berusaha mengekalkan pointer aku pada semester akan datang.

Seterusnya, kontrak aku sebagai pekerja di Bahagian Sumber Manusia di bawah Skim Pelajar Bekerja disambung sehingga pengunjung bulan ini. Alhamdulillah jugak, dapat la aku mencari duit belanja skit, simpan untuk bayar yuran semester depan pulak. Insyaallah jika ade rezeki, bulan depan tukar jabatan pulak. Pergi unit Akademik urus psal urusan konvokesyen plak.

Yang seterusnya, korang pun tau, bulan Jun ni ramai kawan2 aku dah tunang even ade jugak yang dah kawen. Kepada sape2 yang ade jemput aku 2, aku mntk maaf banyak2 sebab x berkesempatan pergi majlis korang. Ape pun aku ucapkan korang sume berbahagia sehingga ke akhir hayat bersama pasangan masing2.


"Hingga Jari Bertemu Keyboard Lagi"



Read more...

Saturday, May 14, 2011

Panduan Melampir Sijil Dalam Pemohon Jawatan

0 comments
Salam sume. Entri ni ditulis di dalam makmal kimia ketika meneman member2 aku wat research diorg. Selain tu, dapat jugak update blog n men tenet dengan kelajuan yang sangat memuaskan hati. So, entri kali ni aku nak beri panduan skit kepada semua yang mengenai bagaimana nak melampirkan sijil ketika memohon jawatan atau pun ape2 pemohonan.



Baru2 ni aku berpeluang kerja part time sementara kt Jabatan Sumber Manusia kt UPSI dibawah skim pelajar bekerja. Skop kerja aku mudah je. Periksa pemohonan2 utk jawatan2 bukan akademik yang ditawarkan. So aku la orang first yang reject application pemohon2 sume. So dari situ aku dapati kebanyakan pemohon tidak menyusun dokumen2 yang dilampirkan seperti yang di minta.

Pertama sekali, pastikan semua sijil dan dokumen yang diminta dilampirkan. Ini utk memastikan bahawa ape yang ditulis dalam permohonan adalah betul. Sebagai contoh, sekiranya ada tulis ade diploma, sila lampirkan sijil diploma dan transkrip2. Ini kerana walaupun anda tulis anda ade ijazah sekalipun tetapi sijil ijazah tidak dilampirkan ianya tidak dikira.

Seterusnya, pastikan susunan sijil dan dokumen2 adalah seperti yang diminta. Jangan susun ikut suka anda. Susun sijil2 akademik seperti Ijazah, Diploma, STPM, SPM dihadapan dan sijil akademik yang lain dan sijil kokurikulum dihadapan. Ini memudahkan majikan untuk melihat sijil anda dengan mudah. Dan pastikan sijil SPM diletakkan dihadapan sekali kerana kebanyakan majikan akan memeriksa sijil SPM anda dahulu untuk memastikan keputusan SPM mencukupi syarat yang ditetapkan, sekiranya tidak pemohonan akan direject trus.

Selain itu, pastikan sijil kokurikulum yang dilampirkan adalah sijil2 ketika anda disekolah menengah dan juga kolej atau universiti. Sijil2 sekolah rendah 2 tidak perlu dilampirkan kerana kebanyak majikan tidak tertarik untuk melihat sijil2 sekolah rendah anda melainkan sijil yang benar2 bagus sahaja.

So setakat itu sahaja panduan yang dapat aku kongsikan. Panduan ini untuk memastikan bahawa majikan yang memeriksa pemohonan anda tidak rasa serabut dengan aturan sijil2 anda kerana banyak pemohonan yang perlu disemak. So aku harap pandauan ini sedikit sebanyak dapat membantu anda ketika memohon sebarang jawatan.

p/s: STAM tidak setaraf dengan STPM / Diploma utk jawatan GRED 27.
p/s: aku bg panduan, tp aku sendri x kerja lagi..Camne 2??hehehe

"Hingga Jari Bertemu Keyboard Lagi"



Read more...

Tuesday, May 10, 2011

Hanif Zolkefle - @Hanif1Malaysia

0 comments


Salam 1 Malaysia kepada sume. Tetiba terasa nak update blog yang xseberapa ni. Kebelakangan ni, aku lebih banyak lepak kt TWITTER berbanding blog. Bukan ape, sebab xde internet connection, so klu nk update & blogwalk 2 agak susah. Bercakap pasal twitter, semalam aku baru je follow twitter YAB PM Dato Seri Najib Tun Razak @NajibRazak. Pastu aku tgk la sape yang Beliau follow, dan kebanyakannya pemimpin kecuali seorang @Hanif1Malaysia. Siapa @Hanif1Malaysia - Hanif Zolkefle?




Hanif Zolkefle merupakan seorang budak berusia 13 tahun yang menghidap Osteosarcoma sejenis kanser tulang dan dimasukkan ke Pusat Rawatan Universiti Malaya untuk menerima rawatan. Hanif teringin untuk chat ngn PM sebab berasa bangga ngn PM, so PM pun bersetuju dengan permintaan tersebut.

So itu la dia sedikit mengenai adik @Hanif1Malaysia. Untuk maklumat lanjut bleh bace kt blog Ahli Parlimen Hulu Selangor P Kamalanathan.


"Hingga Jari Bertemu Keyboard Lagi"



Read more...

Sunday, May 08, 2011

Selamat Hari Ibu & Happy Besday Kak Long

0 comments
Assalamualikum. Lame jgk xberupdate blog ni. Ni sume gara-gara kesibukan dan ketiadaan connection internet apabila aku berada kt bumi Tanjong Malim. Jus nk ucapkan Selamat Hari Ibu kepada my mom dan juga Selamat Hari Jadi my elder sister yang baru sahaja melansungkan majlis pertunangannya semalam.




"Hingga Jari Bertemu Keyboard Lagi"



Read more...

Monday, March 28, 2011

Constructivist Approach In Teaching & Learning

35 comments

Constructivism is a theory of knowledge (epistemology) that argues that humans generate knowledge and meaning from an interaction between their experiences and their ideas. During infancy, it is an interaction between their experiences and their reflexes or behavior-patterns. Piaget called these systems of knowledge schemata. Piaget's theory of constructivist learning has had wide ranging impact on learning theories and teaching methods in education and is an underlying theme of many education reform movements. Research support for constructivist teaching techniques has been mixed, with some research supporting these techniques and other research contradicting those results.

Constructivism approach of teaching in teaching mathematics is one of a major concerned in ICSS. This method enable students to solve problems, construct their own knowledge and concepts and meaningful learning. Constructivism can be described as a learning process that explains how knowledge is acquired and structured in the mine of an individual. However, the knowledge should not be transmitted, but constructed by the learner themselves based on their ability and experience/previous knowledge. In order to implement this approach the teacher should encourage and allow students to construct knowledge through problem solving, exploration and conjecture. Teacher also should encourage students to work in group and also always making discussion.

According to the social constructivist approach, teacher will be the instructor or facilitator and have to adapt to the role of facilitators and not as a teachers. During constructivist approach lesson, teacher will need to plan the strategy in order to implement the approach. Teacher needs to identify the actions that represent the knowledge or skill that need to be constructed by the students. Teacher also will provide the activity that would make the construction a reality and also provides the manipulative materials that are required to carry out the activity. After that, teacher will only facilitate by helping the student to develop their own knowledge but not giving the direct way to obtain or giving the answer to the students.


"Hingga Jari Bertemu Keyboard Lagi"


Read more...

Wednesday, February 09, 2011

Aktiviti Keagamaan Aktif di Bandar Berbanding Kampung di kalangan orang muda.

0 comments

Salam sume. Lama jugak xberupdate blog ni. Ni sume disebabkan kesibukan dalam pelajaran serta sibuk dengan kenduri perkahwinan akak aku yang berlangsung pada 5hb Februari yang lepas. Berbicara mengenai bab agama, mungkin aku pun sangat daif dalam bab ni.

Berbalik pada topik kita, mungkin ade yang bersetuju dan mungkin juga ade yang tidak setuju dengan statement aku ini. Jika dilihat, ada juga kebenarannya. Ini kerana, di bandar lebih banyak aktiviti keagamaan diadakan bertujuan menarik minat remaja-remaja untuk terlibat sama. Justeru itu, remaja lebih tertarik untuk terlibat sama dalam aktiviti tersebut.

Berbanding di kampung, aktiviti keagamaan lebih tertumpu kepada golongan yang sudah berumur atau orang tua. Justeru, remaja akan berasa janggal untuk terlibat sama dalam aktiviti keagamaan tersebut. Justeru, ini membuatkan mereka akan terpencil setiap kali aktiviti-aktiviti keagamaan tersebut dijalankan.

Namun begitu, tanggapan ini tidak 100% nya benar. Ada jugak remaja-remaja di kampung yang gemar terlibat dalam aktiviti-aktiviti keagamaan seperti marhaban, korban dan jugak lain-lain lagi. Walaubagaimanapun, bagi aku, pengaruh rakan jugak antara penyebab remaja menyertai sesuatu aktiviti keagamaan yang diadakan.

Apapun, sebagai seorang remaja Islam zaman sekarang kita haruslah terlibat sama dalam aktiviti keagamaan yang diadakan kerana aktiviti-aktiviti ini yang membantu membangun kembali martabat Islam di dunia ini.

p/s: perasan atau tidak, budak2 selalu g masjid atau surau untuk berjumpe kawan2.


"Hingga Jari Bertemu Keyboard Lagi"



Read more...

Tuesday, February 01, 2011

History of Mathematics - Arithmetic

17 comments

Numbers and counting are a part of everyone’s life and understanding the numbers and their structure is essential to progress the in mathematics, mostly in arithmetic and algebra (Nataraj & Thomas, 2009). Arithmetic come from the Greek word (αριθμός) arithmos meaning number is the oldest and most basic branch of mathematics. They came about because human beings wanted to solve problems and created numbers to solve these problems. It is used by almost everyone, for tasks ranging from simple daily counting to advanced science and business calculations. It is also known as "science of numbers."

The number systems we have today have come through a long route, and mostly from some faraway lands, outside of Europe. The prehistory of arithmetic is limited to a very small number of small artifacts which may indicate conception of addition and subtraction, the best-known being the Ishango bone from central Africa, dating from somewhere between 20,000 and 18,000 BC although its interpretation is disputed. 

The earliest written records indicate the Egyptians and Babylonians used all the elementary arithmetic operations as early as 2000 BC. Egyptians were one of the first civilizations to use mathematics in an extensive setting. Their system was derived from base ten and this was probably so because of the number of fingers and toes. These artifacts do not always reveal the specific process used for solving problems, but the characteristics of the particular numeral system strongly influence the complexity of the methods. 

Their number system worked very well when doing addition or subtraction. The numbers were grouped together in no particular order and the operation was performed. In one example, from the Rhind Papyrus, addition and subtraction signs were represented through figures which resemble the legs of a person advancing for addition, and departing for subtraction. 

The hieroglyphic system for Egyptian numerals, like the later Roman numerals, descended from tally marks used for counting. In both cases, this origin resulted in values that used a decimal base but did not include positional notation. Although addition was generally straightforward, multiplication in Roman arithmetic required the assistance of a counting board to obtain the results. The counting board is ancestor of the abacus, and the earliest known form of a counting device excluding fingers and other very simple methods. Counting boards were made of stone or wood, and the counting was done on the board with beads or pebbles. The oldest known counting board in 300 BC was discovered on the Greek Island of Salamis in 1899. It is thought to have been used by the Babylonians in about 300 BC and is more of a gaming board than a calculating device. 

Early number systems that included positional notation were not decimal, including the sexagesimal (base 12) system for Babylonian numerals and the vigesimal (base 20) system that defined Maya numerals. For this place value concept, the ability to reuse the same digits for different values contributed to more simple and more efficient methods of calculation.

The continuous historical development of modern arithmetic starts with the Hellenistic civilization of ancient Greece, although it originated much later than the Babylonian and Egyptian examples. Prior to the works of Euclid around 300 BC, Greek studies in mathematics overlapped with philosophical and mystical beliefs. The book entitled Introduction to Arithmetic was written by Nicomachus almost 2,000 years ago and contains both philosophical prose and very basic mathematical ideas. It covers Pythagorean number theory and contains the multiplication table of Greek origin. His book was different with Euclid's book, which represents numbers by lines where Nicomachus used arithmetical notation expressed in ordinary language. Nicomachus referred to Plato (429 - 347 BC) quite often, and wrote about how philosophy can be possible only if one knows enough math. This is his only complete book that has survived to our day. Nicomachus describes how natural numbers and basic mathematical ideas are eternal and unchanging, and in an incorporeal realm. 

The derivation of the Greek numerals of hieratic Egyptian system lacked positional notation, and therefore imposed the same complexity on the basic operations of arithmetic. For example, the ancient mathematician Archimedes (287 - 212 BC) devoted an entire work The Sand Reckoner merely to devising a notation for a certain large integer where he computed the number of grains of sand to fill the universe.

Although the Codex Vigilanus described an early form of Arabic numerals (omitting zero) by 976 AD, Fibonacci was primarily responsible for spreading their use throughout Europe after the publication of his book Liber Abaci in 1202. He considered the significance of this "new" representation of numbers, which he styled the "Method of the Indians" (Latin Modus Indorum), so fundamental that all related mathematical foundations, including the results of Pythagoras and the algorism describing the methods for performing actual calculations, were "almost a mistake" in comparison.

In the middle ages, arithmetic was one of the seven liberal arts taught in universities. The flourishing of algebra in the medieval Islamic world and in Renaissance Europe was an outgrowth of the huge simplification of computation through decimal notation. Various types of tools exist to assist in numeric calculations. Examples include slide rules (for multiplication, division, and trigonometry) and nomographs in addition to the electrical calculator.

Decimal Number
The gradual development of Hindu-Arabic numerals independently devised the place value principle and positional notation, which combined the simpler methods for computations within decimal base and the use of a digit representing zero to nine. This allowed the system to consistently represent both large and small integers. This approach eventually replaced all other systems. In the early 6th century AD, the Indian mathematician Aryabhata incorporated an existing version of this system in his work, and experimented with different notations.

Negative Number
Negative numbers appear for the first time in history in the Nine Chapters on the Mathematical Art (Jiu zhang suan-shu), which in its present form dates from the period of the Han Dynasty (202 BC. – AD 220). The Nine Chapters used red counting rods to denote positive coefficients and black rods for negative. These were used for commercial and tax calculations where the black cancelled out the red. 

The use of negative numbers was known early in India, and their role in situations like mathematical problems of debt was understood. During the 7th century AD, negative numbers were used in India to represent debts. The Indian mathematician Brahmagupta, in Brahma-Sphuta-Siddhanta (written in A.D. 628), discussed the use of negative numbers to produce the general form quadratic formula that remains in use today and determined the results for multiplication, division, addition and subtraction of zero and all other numbers, except for the result of division by zero. His contemporary, the Syriac bishop Severus Sebokht described the excellence of this system as "...valuable methods of calculation which surpass description". He also found negative solutions of quadratic equations and gave rules regarding operations involving negative numbers and zero, such as "A debt cut off from nothingness becomes a credit; a credit cut off from nothingness becomes a debt.” He called positive numbers as "fortunes”, zero as “cipher” and negative numbers as "debts." The Arabs also learned this new method and called it as hesab.

Odd and even number
The distinction between odd and even number is one of the most ancient features in the science of arithmetic. The Pythagoreans knew it and their founder may well have learned it in Egypt or in Babylon. The Pythagoreans used the term gnomon for the odd number. A fragment of Philolaus (425 BC) says that "numbers are of two special kinds, odd and even, with a third, even-odd, arising from a mixture of the two." Euclid, Book 7, definition 6 is "An even number is that which is divisible into two parts.”

In English, gnomon is found in 1660 in Stanley, Hist. Philos. (1701): "Odd Numbers they called Gnomons, because being added to Squares, they keep the same Figures; so Gnomons do in Geometry" (OED2). So the ancient Greeks had a word for "odd" that was the word they used for this kind of shape:



"Hingga Jari Bertemu Keyboard Lagi"


Read more...

Wednesday, January 26, 2011

Larang Bermain Liga Tempatan

0 comments

Salam sume. Lame tak update blog ni. Maklum la, agak sibuk skit dengan master dan persiapan majlis perkahwinan my sister this CNY. Kali ni, aku just nak mengupas dan memberi pandangan serta mengajak yang laen untuk membincangkan isu yang agak menarik ini.

Isu ini berkenaan cadangan Datuk Seri Ahmad Shabery Cheek, Menteri Belia dan Sukan untuk melarang pemain-pemain yang dikenal pasti mewakili skuad kebangsaan untuk misi kelayakan ke Sukan Olimpik 2012 tidak beraksi di liga tempatan sebaliknya bermain di liga luar negara selepas menyenaraikan sukan bola sepak dan hoki dalam program Road To London 2012 (RTL).

Dari satu aspek, cadangan ini dirasakan akan memberikan kesan positif kerana mampu menaikkan mutu bola sepak negara dengan memberi pendedahan dan pengalaman yang berguna kepada pemain-pemain negara. Ia juga mungkin merupakan penyelesaian kepada kemerosotan mutu bola sepak negara.

Namun begitu, bagi aku, cadangan juga akan memberikan kesan negatif lebih-lebih lagi terhadap liga bola sepak tempatan. Ini kerana, liga tempatan akan kurang dapat menarik minat peminat kerana barisan-barisan pemain negara tidak beraksi di dalam liga tempatan ini.

Apa pun, bagi aku, sekiranya kita hendak menaikkan semula mutu bola sepak negara, kita haruslah bermula dari awal iaitu dengan mendidik generasi muda dengan lebih berkesan seperti di negara eropah yang melahirkan ramai pemain bola sepak berkualiti melalui akademi-akademi bola sepak nya seperti di Arsenal dan Barcelona.
"Hingga Jari Bertemu Keyboard Lagi"


Read more...

Saturday, January 01, 2011

Yang Terhangat Dan Menarik 2010

0 comments

Salam sume. Sempena tahun 2011 ni, jom mengimbas kembali apa yang terhangat dan menarik di blog aku ni. Nak cite ape terhangat kt Malaysia atau Dunia, mesti dah ramai orang yang buat. So aku juz recall back a few entries that quite popular in my blog for 2010.

Of course, yang terhangat adalah entri mengenai Gambar Nabil & Qasha Cium Mulut - Betul atau Photoshop? Entri ini paling banyak menyumbang traffic ke blog aku. Memang macam pisang goreng panas entri ni. Sangat la terhangat. Tapi xcukup hangat macam yang berlaku kt blog awek Khairul Fahmi Che Mat - Elia.

Seterusnya, entri mengenai 5 pahlawan Proton - Tuah, Jebat, Lekir, Lekiu, Kasturi. Entri mengenai kereta konsep dari proton yang di pamerkan di Kuala Lumpur International Motor Show (KLIMS). Kemudian, 2 entri blogwalking yang hangat pada waktu aku rajin ber"blogwalking" iaitu Curi Trafik - Cara Mudah Blogwalking!!! dan Men'CAPUP' - Cara Mudah Tarik Trafik Blogwalking.

Antara entri2 laen:
  1. 1.Lagu Kemerdekaan - Lirik & Download Link
  2. 2.Hanya RM2 untuk Panggilan dan SMS Sepanjang Hari
  3. 3.Tips - Khasiat Buah Tomato
  4. 4.Wanita Ibarat Buah Epal!!!

So, kepada, follower2 TheWayIThink teruskan bersama Shahir untuk tahun 2011 dan lebih banyak entri yang lebih bermanfaat dan berguna serta berinformasi akan dikongsikan. Akhir kata, Selamat Tahun Baru 2011 & Happy New Year.


"Hingga Jari Bertemu Keyboard Lagi"



Read more...